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Abstract

We propose a novel robust video stabilization method. Un-
like traditional video stabilization techniques that involve com-
plex motion models, we directly model the appearance change
of the frames as the dense optical flow field of consecutive
frames. We introduce a new formulation of the video stabiliza-
tion task based on first principles, which leads to a large scale
non-convex problem. This problem is hard to solve, so previous
optical flow based approaches have resorted to heuristics. In
this paper, we propose a novel optimization routine that trans-
fers this problem into the convolutional neural network param-
eter domain. While we exploit the general benefits of CNNs,
including standard gradient-based optimization techniques, our
method is a new approach to using CNNs purely as an optimizer
rather than learning from data. Our method trains the CNN
from scratch on each specific input example, and intentionally
overfits the CNN parameters to produce the best result on the
input example. By solving the problem in the CNN weight space
rather than directly for image pixels, we make it a viable for-
mulation for video stabilization. Our method produces both vi-
sually and quantitatively better results than previous work, and
is robust in situations acknowledged as limitations in current
state-of-the-art methods.

1. Introduction

Video stabilization has been an important part of both profes-
sional and amateur video processing tools like Adobe Premiere,
After Effects and Deshaker. There are also numerous researches
on video stabilization. These works are typically summarized
into two categories according to the dimensionality of the model
used to interpret the frame motion. The 2D methods analyze the
video frame motion by tracking features in 2D image space. The
frame motion is modeled as a full-frame 2D image transforma-
tion like Matsushita et al.[22] or a grid of local homographies
like Liu et al.[21]. 3D methods seek to explore the 3D loca-
tion of feature points in the scene while calculating the camera
pose in 3D space. Works following this direction include Liu
et al.[18], Bhat et al.[1] and Sun[25]. However, all previous
methods involve various heuristics. In real scenarios, complex
effects (e.g. motion blur, occlusion, parallax) may unexpectedly
break the assumptions in these methods and therefore produce
artifacts in the results.

It would be ideal if we could make no assumptions about

the physics and directly optimize the appearance change of the
frames in the results so that the video is stabilized. To model
the appearance change, dense optical flow fields between con-
secutive frames are needed. We seek to apply pixel-wise off-
sets to these optical flow fields, and smooth the motion of
each pixel. However, modeling the frames with optical flow
brings three major challenges. First, modern videos are usu-
ally high-definition. This means that the number of pixels in
each frame is large. As the length of video grows, optimiza-
tion quickly becomes intractable since too many pixel motions
need to be solved. (For example, for a 100-frame standard 480P
video(854×480), the number of motion vectors to be solved is
854 ∗ 480 ∗ 100 = 4.1 × 107). Second, as the problem size
becomes large, the energy landscape of the non-convex opti-
mization becomes complex. General gradient-based optimiza-
tion algorithms may easily get stuck in local minima and yield
unsatisfactory results. Third, the performance of the video sta-
bilization is affected by the quality of optical flow. Local errors
in the optical flow map will also be blindly treated as actual
pixel motions, causing artifacts in the final results. Therefore,
the regularization needs to be carefully designed to enforce spa-
tial consistency and maintain robustness to the errors in the op-
tical flow field.

Instead of trying to directly solve for the pixel-wise warp
field, we propose a novel method that optimizes in the space
of neural network parameters. Note that unlike standard CNN
approaches, we don’t use large datasets or learning of parame-
ters a-priori. We train the CNN from scratch on a single input
video. In fact, there is no traditional training in our method; the
CNN is simply used as a robust way to do global optimization
with a physically-based objective function. The other impor-
tant difference from traditional CNN training is that we seek to
overfit the data as much as possible since our sole goal is to
produce the best results for the single input video. By optimiz-
ing the parameters of the CNN rather than directly for pixels in
a single test video, we make the dense warp field optimization
tractable. A similar idea has been employed in image genera-
tion and restoration by Ulyanov et al.[27], but is applied by us
for the first time in video stabilization. This idea may be ap-
plicable in many other image and video processing applications
where the physically-based problem is intractable for traditional
optimization algorithms.

The pipeline of our method is shown in Fig. 1. We first
pre-stabilize the video to reduce the frame motion (Appendix
A). We use optical flow between consecutive frames to generate



Figure 1. The pipeline of our method. (a) We first pre-stabilize the video using basic 2D affine transformation. (b) Using the optical flow between
consecutive frames of the pre-stabilized video, we formulate the video stabilization as the minimization of the distance between corresponding
pixels. (c) We use a convolutional neural network as the optimizer to solve for a 2D affine transformation and a warp field for each frame. (d) The
video frames are warped and cropped to a rectangle to produce the stabilized result.

dense correspondence of all pixels between the two frames. The
stabilization is achieved by minimizing the distances between
corresponding pixels. We seek to solve a full frame 2D image
transformation and a dense warp field for each frame, so that the
original frames can be warped and stabilized. We will discuss
our formulation of the video stabilization problem in Sec. 3.

In summary, our contributions include:
Optical flow based formulation: We use the optical flow to
track the actual motion of all the pixels in the video instead of
pixel profiles in Liu et al.[20], which enables high robustness,
universal stabilization over any part of the scene (regardless of
foreground or background), and flexible non-parametric frame
warping (Sec. 3). Our novel formulation of video stabilization
leads to a large scale non-convex problem, which is addressed
as discussed below with a CNN-based optimization.
Neural network based regression: We propose a new idea to
transfer the video stabilization problem into a neural network
based regression (Sec. 4). We also discuss the implementation
details of the neural network regression in Sec. 5. We analyze
the effect of different network structures on the final results, and
propose a network structure that is best for video stabilization.
Our network structure significantly simplifies the optimization
process and generates compelling results (Sec. 6).

2. Related Works
In this section, we summarize related works in video stabi-

lization and neural network based regression.

2.1. Video Stabilization
2D Methods The 2D methods in general have low computa-
tional complexity and can be solved efficiently. However, 2D
methods suffer from potential problems. First, the tracked 2D
features can be unreliable due to motion blur and illumination
change. Obtaining long feature tracks is also difficult in videos
with significant occlusions. Liu et al.[21] tracks the 2D feature
points and solves for a grid that smoothes its enclosing feature
tracks. Grundmann et al.[7] requires a camera path calculated
from feature tracks as an initialization of the algorithm. Buehler
et al.[2] also requires long feature tracks and simple motion sce-
narios. Some methods seek to explore the relative position of
feature points. Liu et al.[19] perform stabilization on the ex-
tracted eigen-trajectories. Goldstein and Fattal[6] utilize the
epipolar geometry to maintain the relative position of feature

points. Wang et al.[29] also seek to keep the relative position of
feature points. These works’ performances are still subject to
the quality of tracked features.

Second, using a parametric motion model is usually insuffi-
cient to stabilize videos with parallax effects, since the motions
of pixels in the same frame are not subject to the same homog-
raphy constraint. Matsushita et al.[22] and Gleicher and Liu[5]
treat the scene as a plane and use a full-frame homography to
stabilize the video. Liu et al.[21] and Yu and Ramamoorthi[31]
divide the frames into grids and apply a local homography, but
essentially cannot handle complex depth variation in the scene.
Liu et al.[20] uses optical flow to warp the original frames.
However, the pixel profile proposed in Liu et al.[20] is very
sensitive to motion discontinuities. Therefore, they still need
heuristics to identify the foreground/background and carefully
inpaint the regions where the motion is different from the back-
ground.

Our method is more robust than general 2D methods in terms
of feature tracking, since our method tracks all the pixels and
is robust to local errors in the optical flow. We also enable a
non-parametric frame warping, which handles parallax effects
without reconstructing the 3D structure of the scene. Although
we used optical flow to synthesize stabilized frames like Liu et
al.[20], our method is fundamentally different from their work.
In our work, we track the actual motion of each pixel instead
of the pixel profile which only collects the motion vectors at
each pixel position. This makes our method robust to parallax
and does not require the filling in of the motion discontinuity
regions. However, our formulation results in a large scale non-
convex problem which cannot be written as a simple quadratic
form as in Liu et al.[20] To solve this non-trivial problem, we
discuss our novel neural network based optimization routine in
Sec. 4.
3D Methods Unlike 2D methods, 3D methods seek to explore
the 3D location of feature points in the scene while calculating
the camera pose in 3D space. These works in general handle
parallax better than 2D methods, since the motion is physically
analyzed in actual 3D space. In these works, the camera path is
smoothed and the 3D feature points are reprojected to new cam-
era positions in order to guide the warping[18, 25] or the meth-
ods use image-based rendering[1] to synthesize a frame from
the original frames. However, the 3D methods suffer from ro-
bustness and complexity issues in Structure from Motion.

There are also video stabilization methods that require spe-



Figure 2. The objective function of our method. The computed bidirec-
tional original optical flow provides correspondence among all pixels
in two consecutive frames. In this figure, pi,t is associated with pj,t+1

by Ft and pk,t+1 is associated with pl,t by Ft. Our goal is to solve a
2D affine transformation H and a warp field W to minimize the dis-
tance between the associated pixels.

cific hardware information or focus on video captured with a
specific camera. Sun[25] requires a depth camera for video
stabilization. Smith et al.[24] requires a light field camera.
Karpenko et al.[10] uses gyroscope information to help in sta-
bilizing the video. Kopf[12] focuses on videos captured with
a 360◦ camera. Some of these works show strong results, but
have limited application since most videos do not include the
extra information required in these algorithms.
Deep Learning Based Methods Some recent works seek to
use a pre-trained network in video stabilization tasks. Wang
et.al.[28] train a two-branch Siamese network and try to directly
predict the homography transformation from the current frame
and previous stabilized frames. Xu et.al.[30] also try to use
spatial transformer networks (STN) to predict the affine trans-
formation. Moreover, they use an adversarial network to di-
rectly generate previous stabilized frames instead of the real
frames in Wang et.al.[28]. Although these works utilize pre-
trained CNNs, they still use a simple full-frame transformation
as the motion model, which cannot handle parallax effects. Lin
et.al.[16] proposed a mesh deformation algorithm by enforcing
the photo consistency between images. Their semi-dense photo-
metric alignment provides better robustness compared to meth-
ods using feature points. However, the photometric based met-
ric can be unreliable in homogeneous regions, object boundary
and occluded regions. These regions are also challenging for
optical flow algorithms, but as we will discuss in Sec. 3, our
regularization can help avoid visual artifacts in these regions.

2.2. Neural Network Regression

Deep convolutional neural networks have been used in var-
ious image/video processing tasks. Such applications include
image super-resolution[3, 13, 14, 26], image denoising[15],
HDR reconstruction[4], panorama video loop generation[8] and
video interpolation[9]. Some of these methods are designed for
processing a single image/video, but their networks are essen-
tially trained on a large dataset of images/videos. Unlike tra-
ditional deep learning, our method treats the network purely as
an optimizer over one single input video. We train the network
from scratch for each specific video, and try to overfit and obtain
the best result for the input.

Notation Meaning Size
w Frame width 1
h Frame height 1
t Frame index(time) 1
T Total number of frames 1
It Input RGB frame at t w × h× 3
x, y Pixel coordinate 1

i, j, k, l Pixel ID 1
pi,t Spatial location of pixel i at t 2× 1

ph
i,t Homogeneous version of pi,t 3× 1

p̂i,t Warped pi,t 2× 1
Pt Coordinates of all pixel in frame It wh× 2
St The coordinates of four corner pixels 4× 2

D
Weight of all pixels in the 2D interpolation
representation w.r.t. S wh× 4

Ft Optical flow from frame It to It+1 w × h× 2

Ft Optical flow from frame It+1 to It w × h× 2
Ht 2D affine transformation 2× 3
Wt 2D warp field w × h× 2
θ Neural network parameters

G(θ) Neural network as a function of θ

Table 1. Notations used throughout the paper.

Ulyanov et al.[27] recently proposed that a randomly-
initialized neural network can be used in learning image priors
on a single image. The idea is that the variables of a typical
optimization task can be replaced by the output of a neural net-
work. The neural network is randomly initialized and trained
on a single image to minimize the loss function designed for
a specific task, e.g. denoising, superresolution, and inpainting.
This enables the optimization in the neural network parameter
space instead of image space, while dramatically improving the
result. In this work, we expand this idea into video processing,
which is more difficult than the single image processing sce-
nario in terms of the problem formulation and complexity. By
transferring the video stabilization problem into neural network
parameter space, we can easily solve the large scale problem,
which is difficult to solve using traditional optimization meth-
ods. Moreover, we further analyze the effects of different types
of architectures on the final optimization result. We will discuss
this idea in detail in Sec. 4.

3. Optical Flow Based Objective Function
It is well-known that videos usually have multiple factors

that cause difficulties for video stabilization algorithms, e.g.
lens distortion, motion blur, dynamic objects, parallax, low-
illumination etc. These effects can be individually modeled us-
ing hand-crafted physically based models. However, in real-
world videos, effects usually couple with each other, making al-
gorithms specifically designed for one single effect fail in other
cases. Instead of trying to physically model these complex ef-
fects, we treat the video stabilization task as a pure 2D image
processing problem. In this paper, we seek to minimize the ap-
pearance change among video frames.

3.1. Optical Flow Objective Function
To model the appearance change, an intuitive approach is

to calculate original optical flow between consecutive video
frames and find frame transformations to minimize the motion



Figure 3. Video stabilization results using regularization vs. no regu-
larization. (Left) Due to the moving object in the scene and the inac-
curate original optical flow, unexpected artifacts are introduced if the
video is stabilized purely according to optical flow. (Right) Applying
proper regularization helps reduce the visual artifacts.

of pixels. Note that in Fig. 1, we first perform a pre-stabilization
step, where we track sparse feature points and preliminarily sta-
bilize the video as discussed in Appendix A. The remainder of
the paper takes the output from this pre-stabilization step as its
input, and discusses subsequent optimization to stabilize the re-
sulting video. To make the following discussion clear, we define
the notations in Table 1.

To simplify the notation, we unroll the pixel coordinate x, y
to a single pixel ID i. Denote the original optical flow from t
to t+ 1 as Ft, a two-channel image that encodes the shift of all
the pixels in frame It to frame It+1. For example, denote the
position of pixel i in frame It as pi,t. Its corresponding pixel in
frame It+1 can be represented as

pj,t+1 = pi,t + Ft(pi,t) (1)

Similarly, a backward optical flow can be computed and maps
the pixels in frame It+1 to frame It

pl,t = pk,t+1 + Ft(pk,t+1) (2)

We illustrate our approach in Fig. 2. Our goal is to warp
each original frame so that the output frames are stabilized.
The warping operation consists of two components: a 2D affine
transformation Ht and a per-pixel warp field Wt. Therefore,
the warped pixel i and l in frame It can be represented as

p̂i,t = Htp
h
i,t + Wt(pi,t)

p̂l,t = Htp
h
l,t + Wt(pl,t)

(3)

where phi,t and phl,t stands for the homogeneous representation
of pi,t and pl,t. Similiarly, its warped correspondence in frame
It+1 is

p̂j,t+1 = Ht+1p
h
j,t+1 + Wt+1(pj,t+1)

p̂k,t+1 = Ht+1p
h
k,t+1 + Wt+1(pk,t+1)

(4)

The objective is to minimize the Euclidean distance between
the warped pixel positions:

Eo(W,H) =
1

wh(T − 1)

T−1∑
t=1

(

wh∑
i=1

‖p̂i,t − p̂j,t+1‖2 +

wh∑
k=1

∥∥p̂l,t − p̂k,t+1

∥∥2)
(5)

where wh is the total number of pixels in a frame and T is the
total number of frames. Note that the mapping from pi/l,t to
pj/k,t+1 is 1-to-1, so we only need to average over i and k.

3.2. Regularization
Due to the complexity of scenes, the original optical flow

could be inaccurate in some regions. Moreover, objects in the
scene might be moving regardless of the motion of the cam-
era. Blindly optimizing the objective function (5) could intro-
duce artifacts. An example of these artifacts is shown in Fig. 3.
Therefore, we seek to enforce the local continuity of the output
warp field Wt.

The four corner pixels define a rectangular region, in which
each pixel position pi,t can be represented by a linear interpo-
lation of the coordinates of the four corner pixels: Pt = DSt,
where each row of Pt is the coordinate of pixels, each row of
D is the 2D interpolation weight, and each row of St is the 2D
coordinates of the four corners. Note that moving the corner
position correspondingly changes all the pixel locations:

∆Pt = D∆St

A warp field obeying this linear warping rule should satisfy:

‖Wt −D∆St‖2 = 0 (6)

However, our output warp field Wt will not exactly be a linear
warping. Our goal is to keep the term in (6) as small as possible.
The least squares representation of ∆St is:

∆St = (DTD)−1DTWt

This estimation of ∆St leads to the error of:

Er(W) = Wt −D(DTD)−1DTWt (7)

We use this error as a constraint to enforce the output warp field
close to a linear warp field. Note that this formulation allows us
to control the linear warping constraint at a pixel-level, simply
by changing D. For example, in our experiment, we cover each
frame with a 20x20 grid and fill D with the weight of each pixel
in its enclosing grid cell.

Moreover, the original optical flow Ft is less reliable for re-
gions with large motions. To take this into consideration, we
tend to increase the regularization value (7) for large motion
regions to obtain Wt with fewer discontinuities; on the other
hand, for small motion regions, we tend to trust the optical flow
and decrease the regularization value. The measurement of mo-
tion scale can be estimated using the pixel motion obtained from
the original optical flow:

Ep = F2
t + F

2

t (8)

3.3. Final Objective Function
Combining (5), (7) and (8), our optimization problem can be

written as:

min
W,H

Eo(W,H) + λ ‖Ep · Er(W)‖1 (9)



Figure 4. Our network structure. The overall structure is shown on the left. The details of each type of module are shown on the right. The numbers
shown on the upper-left/lower-right corner of each module represent the number of input/output channels. The numbers in red/green represent two
different channel configurations of the network. The orange box represents optional skip-connections between downsample modules and upsample
modules. Combining the channel configurations and skip-connection options, a total of 4 different configurations are used in our experiment (listed
on the lower-right of the figure).

where λ is a hyperparameter controlling the amount of regular-
ization in general. Since the magnitude of original optical flow
Ep has the same size as the regularization Er, we use it as a
pixel-wise weight to Er. Note that to encourage sparsity in the
warp field and avoid over compensation to erroneous regions in
the original optical flow, we use L1 norm for this regularization.
Discussion Our formulation directly models the motion of ev-
ery pixel in a video using dense optical flow. Unlike previous
works that use various heuristics, our method is based on the
first principles that we should stabilize what we finally perceive.
The most similiar idea is the SteadyFlow proposed by Liu et
al.[20]. However, they only collect the motion vector on fixed
pixels. The motion vectors on a single pixel correspond to the
motion of different locations in the scene. The accumulation
of these vectors does not match the true motion of the camera.
Our formulation is novel since we physically model the motion
of every visible point in the scene. This leads to a more difficult
optimization problem, as we will discuss in Sec. 4.

4. Convolutional Neural Network Regression
Note that the unknowns in (9) are a per-frame optical flow

field Wt and a per-frame 2D affine transformation Ht. For a
300-frame video clip with a standard 480p resolution, the to-
tal number of unknown motion vectors is approximately 123
million. Directly optimizing a problem of this size is typically
prohibitive due to the computation cost and limited memory.
Moreover, the optimization will be difficult due to the complex
high-dimensional energy landscape with a large number of local
minima.

Our main idea to solve this problem is to search for the an-
swer in the neural network parameter space instead of in the
problem space. In fact, we are using the neural network as
an optimizer. Our method is different from traditional learn-
ing on large datasets. There is no training set, and the network
weights are directly optimized on the input video with the ob-
jective function in (9). Using a network makes this non-convex
high-dimensional optimization problem practical, enabling us
to directly use a robust optical-flow based stabilization formu-
lation.

To our knowledge, our method is the first work that uses
this idea in video stabilization tasks. Another insight is that al-
though the optical flow field is represented pixel-wise, it is spa-
tially smooth for real-world scenes. Therefore, our warp field
{W,H} can be described well by a parameterized function.
However, given the complexity of this process, a complex and
differentiable parameterized function needs to be designed. In-
stead of hand-crafting this function, we select the convolutional
neural network as an ideal out-of-the-box solution for this task.

Denote the neural network as a function G(θ) where θ rep-
resents the parameters of the network. We seek a set of network
weights so that the output of the network is the desired warp
field {W,H} = G(θ). Therefore, the optimization problem
(9) can be reformulated as:

min
θ
Eo(G(θ)) + λ ‖Ep · Er(G(θ))‖1 (10)

The goal becomes searching for the parameters θ by training
the network on a single video clip. Note that since our objec-
tive function consists of simple linear and quadratic functions
of {W,H}, (10) is differentiable with respect to network pa-
rameters θ.

Our network structure is shown in Fig. 4. The input of the
network is a set of T −1 original optical flow fields F computed
from input video frames. The frames of optical flow fields are
sent in as different channels. The input is encoded by 5 layers
of downsample modules. Each downsample module downsam-
ples the frame size by 2 but doubles the number of channels,
except the last one that only doubles the number of channels.
The decoder consists of 4 layers of upsample modules followed
by an output convolutional layer with kernel size 1 × 1. The
output of the decoder is the desired warp field W. In addition,
we fed the encoded information into a 2D transformation mod-
ule consisting of two convolutional layers and two linear layers.
This module produces the desired 2D affine transformation ma-
trix H. The number of output {W,H} pairs is T − 2. We will
explain why we have T − 1 input channels and T − 2 output
channels, and discuss the selection of T in Sec. 5. Since we only
input the optical flow of a single video and try to optimize the
network parameters, we seek to overfit the single input video as



Figure 5. The sliding window example with window size T = 6. For
each window, the warp field of the first frame is fixed as computed from
the previous window. The last frame is fixed so that it is not warped. We
optimize the objective function discussed in Sec. 3 for the entire length
T window and solve for T − 2 warp fields.

much as possible. Therefore we avoid inserting dropout layers
and any regularization on network weights.

As noted in Fig. 4, we have two different channel config-
urations. The channel configuration 1 requires more network
parameters, while the channel configuration 2 leads to a sim-
pler network. In addition, the network can optionally include
skip connections. Combining these choices, we have four dif-
ferent network configurations in this paper. We will compare the
performance of these configurations in Sec. 6. Specifically, we
will show the relation between the network configuration and
the regression error (9) in Fig. 11 and discuss how the network
configuration will affect the optimization performance. We will
also show the network configuration’s effect on the final stabi-
lization result in Fig. 11.

5. Implementation Details
Sliding Window We now explain the details about why we have
T − 1 optical flow fields as the network input and T − 2 warp
fields as the network output. Since the input video may have
different lengths, we stabilize a video using a sliding window
approach. The process is demonstrated in Fig. 5, where an ex-
ample with T = 6 is shown. In this case, the window covers
T = 6 video frames and T −1 = 5 original optical flow frames.
Note that since the input of our network is the original optical
flow, the number of input channels is T−1. The desired number
of estimated {W,H} pairs should be 6, which can warp each
frame and generate stabilized frames. However, to enforce tem-
poral consistency, we make the windows overlap by two frames
and fix the warp field of the first frame. We also fix the last
frame to retain the global motion of the original video. The
warp field of the first frame is copied from the estimation of
the previous window. The warp field of the last frame is fixed to
W = 0,H = I for the current window, but will be re-optimized
as the second frame of the next window. The last frame of the
last window remains unwarped. Therefore, for each window,
we have T − 2 = 4 pairs of warp fields {W,H} as the network
output.
Selection of Window Size It is clear that the selection of T
will affect the complexity of the optimization problem. The
more frames we want to stabilize at the same time, the more
complex the energy landscape will be. In Fig. 6, we show the
error descent of optimization using T from 10 to 80 frames with
a step size of 10. The y axis represents the percentage of the
error of current iteration with respect to the initial error. Each
curve is the averaged result for all segments of our examples
in Sec. 6. It shows that in smaller T cases, the optimization

converges faster but yields higher error after convergence. This
is because in a shorter video segment, we have fewer degrees
of freedom in the warp field. Although a larger window size
leads to better error performance, more memory and iterations
are required to stabilize a video segment. Taking all these into
consideration, we select T = 60 in our experiments.

Figure 6. Comparison of results stabilized with window size T = 10 to
T = 80. The inset shows a zoom-in of the region circled by the dotted
box. Smaller window cases converge faster but result in higher error.
Larger window cases yield lower error but converge slower.

Miscellaneous We use the Liu[17] to compute the original bidi-
rectional optical flow. Before computing the original optical
flow, we pre-stabilize the video to eliminate large motions. The
reason for the pre-stabilization stage includes two aspects: the
quality of optical flow is undermined by large motions; the pix-
els in the boundary regions do not have correspondence in their
neighboring frame, and this effect is significant in large motion
cases. We will discuss details about pre-stabilization in Ap-
pendix A. The regularization value λ in (9) is set to be 0.5 for
all the examples shown in the supplementary video. The opti-
mizer we used is Adam[11] with β1 = 0.5, β2 = 0.59 and a
learning rate of 10−4. We optimize for 150 iterations for each
T = 60 window.

Figure 7. Example stills of our examples. The example numbers are la-
beled above the frames. In the right table, we also summarize their
properties that have significant effects on video stabilization algo-
rithms.

6. Results
In Fig. 7, we show example frames of the video clips used in

our paper. In order to collect a large enough set of examples for
comparison, we combined datasets from many previous papers.
In our dataset, numbers 1-8 are taken from Steadyflow[20],
numbers 9-15 are taken from Liu et al.[21], numbers 16-20 are
taken from Liu et al.[18], and numbers 21-25 are taken from Yu
and Ramamoorthi[31]. We also summarize their properties that
have significant effects on video stabilization algorithms in the
right table in Fig. 7.

We use five metrics to evaluate the quality of the results. Our
result is generated with Config 1 mentioned in Fig. 4. We will



Figure 8. Quantitative comparison using our metric. In this figure, a lower bar indicates a better result. The result is normalized with the score
of the input video. In the left figure, results that have a normalized score greater than one are clamped in this figure. The right figure shows the
averaged results over the entire 25 examples. On the rightmost part of the figure, we only compare to Liu et al.[20] using their data (examples 1-8)
since we don’t have their implementation. We compare to Yu and Ramamoorthi[31] only on selfie videos (examples 21-25). We mark our results
with the red stars. The exact scores are marked on top of each bar.

further discuss the effect of network configuration later in this
section.
Quantitative Results Using our Objective Function: In
Fig. 8, we show quantitative comparison of the result qual-
ity of the input video, our result and Steadyflow[20], Grund-
mann et al.[7], Liu et al.[18], Liu et al.[21] and Yu and
Ramamoorthi[31]. Metric A is our metric, which is defined as
the accumulated optical flow over the entire video:

1

wh(T − 1)

T−1∑
t=1

h∑
x=1

w∑
y=1

(‖Ft(x, y)‖2 +
∥∥Ft(x, y)

∥∥
2
)

which evaluates the appearance change between consecutive
frames in the results. The essence of this metric is similar to our
objective function (5). However, the metric is different from (5):
the optical flow it uses is computed from the resulting video.
Note that to compare videos with different frame sizes, we nor-
malize the optical flow by its frame size. A smaller score indi-
cates a better result in metric A. To show the amount of stability
improvement, all the scores are normalized by the score of the
input video.

In our work, we directly tried to minimize the overall ap-
pearance change. Therefore, our method achieves the best re-
sult on average and performs better than comparison methods
under this metric. Note the benefit gained by using our CNN
based optimization framework, comparing to the pre-stabilized
result. We also perform significantly better in example 8, which
contains large foreground occlusion and is claimed as a limi-
tation case in SteadyFlow[20]. For selfie videos (example 21-
25) in which large occlusion exists, we are also able to achieve
smoother appearance change. Our method obtains a larger score
comparing to Liu et al.[21] in example 12, but their result con-
tains large visual distortion as we will discuss later in this sec-
tion. For some examples (6, 7, 9, 11, 17, 20), our result has a
slightly higher score than the comparison methods, but there are
no visible quality differences with the other methods.

In Fig. 10, we also compare our method with the other
video stabilization methods over the commonly used NUS
dataset[21]. We randomly select 5 videos from each category
and average the Metric A of the results. Our method performs
better on this more general video stabilization dataset.
Quantitative Results Using Other Metrics: The metrics B,
C and D were proposed by Liu et al.[21], which evaluates the
results’ cropping ratio, global distortion and frequency domain

Figure 9. Quantitative comparison using metrics proposed by Liu et
al.[21] and Yu and Ramamoorthi[31]. Metric B measures the cropping
ratio compared to the input video, metric C measures the global dis-
tortion, metric D measures the frequency domain stability and metric
E measures the motion smoothness. We mark our results with the red
stars. The exact values are marked at the bottom of each bar. Metric D
is considered as the most important metric.

Figure 10. Metric A evaluation over the results for the NUS dataset.
We randomly select 5 videos from each category and average the re-
sults. Note that our network optimization significantly improves the
pre-stabilization results. Our method is also better than comparison
methods in challenging categories like Crowd, Parallax and Running.

stability. In metrics B, C and D, a higher value indicates a bet-
ter result. Metric E was proposed by Yu and Ramamoorthi[31],
which evaluates the smoothness of the frame motion in the re-
sult. In metric E, a smaller value indicates a better result. In
Fig. 9, we show comparison of averaged score over the entire
25 examples. The full comparison on each individual video is
provided in the supplementary material.

In metrics B and C, since we warp the pre-stabilized video
using the warp field and crop to a rectangle, we expect the final
result to be slightly worse than the pre-stabilized result in terms
of cropping and distortion. However, we are still achieving bet-
ter results than comparison methods in metric B (cropping) and
comparable result in metric C (distortion). In terms of metric



D (stability), which is the most important aspect of video sta-
bilization, we outperform the comparison methods on average.
For metric E (motion smoothness), our method also performs
significantly better. Note that comparing to the method specifi-
cally designed for selfie video[31], we are also able to achieve
both better metric D (frequency stability) and metric E (motion
smoothness) without explicitly modeling the human face.
Visual Comparisons in Video: Besides the quantitative met-
rics, we also show visual comparison in the supplementary
video. For videos with large occlusion (example 2, 4, 8, 14,
21-25), feature track based 2D methods[7, 21] fail due to the
difficulty in obtaining long feature tracks. They also produce ar-
tifacts in videos coupled with other effects: extreme motion (ex-
ample 15), motion blur (example 5), rolling shutter (example 3
and 5) and parallax (example 12). 3D methods[18] also cannot
produce satisfactory results since structure from motion is not
suitable for dynamic scenes in general. The optical flow based
method[20] failed in challenging cases like example 8, since its
heuristic on motion completion cannot handle large foreground
occlusions. Our method is more robust in these cases. We do
not explicitly handle the motion discontinuity, but resort to the
continuity regularization (7) and (8) and make it part of the op-
timization. We are able to handle this complex optimization
problem thanks to optimizing the neural network parameters in-
stead of the warp field itself.

Figure 11. Effect of network structures. The figure on the left shows the
regression error using different network configurations shown in Fig. 4.
The right figure shows the effect on the final result using our metric.

Evaluation of Network Configurations: Now we discuss the
effect of neural network configuration on the video stabilization
result. As noted in Fig. 4, we have 4 different network config-
urations in our experiment. In the left part of Fig. 11, we com-
pare the regression errors defined in (9) over 150 optimization
iterations using these configurations. Each curve represents the
average regression error on a single video segment with length
T = 60. Networks with more channels (Config 1 and 3) can
achieve lower error than networks with the same structure but
fewer channels (Config 2 and 4). Fig. 11 also shows that net-
works with more complex structure (Config 1 and 2) can de-
scend to lower error than networks with the same channels but
with simpler structure (Config 3 and 4). We also compare the
quantitative evaluation of the result videos using different net-
work configurations in the right part of Fig. 11. The values are
averaged over the 25 example videos in our paper. The sim-
ple networks (Config 2, 3 and 4) cannot achieve equal quality
results as the most complex network (Config 1), and the differ-
ence in quality among these simple networks are less signifi-
cant. This proves that the precise network architecture is impor-
tant in the our case, and we find the Config 1 network is the best
for video stabilization.

7. Conclusion
In this paper, we proposed a new video stabilization for-

mulation based on first principles. This formulation leads to
a large scale non-convex optimization problem that previous
works tried to avoid by proposing various heuristics. We also
proposed a novel CNN based optimization routine for this prob-
lem, which does not require a large dataset and is re-trained on
each single video. Our method can be applied on any video
regardless of the complexity of the scene.

The limitation of our method is the computation time. Our
method is an offline method which requires about 30min to sta-
bilize a 300-frame video on a GTX1080Ti graphics card. Since
we do not focus on computation time in this paper, we believe
the algorithm can be further speeded up, for example, using
unidirectional optical flow and/or other network structures and
channel configurations.

Our work is the first that explores the possibility of apply-
ing CNN techniques to video stabilization. An interesting fu-
ture work would be a universal pre-trained neural network based
on a large video dataset, followed by a fast video-specific fine-
training pass. We have made preliminary efforts in this direc-
tion, but the training on a dataset of video segments does not yet
converge. However, we believe that a CNN can be trained with
a slight modification of our algorithm, and significantly speed
up the video stabilization process.
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Appendix A. Pre-Stabilization
Although we have considered the inaccuracy of the origi-

nal optical flow in Sec. 3, a pre-stabilization is still necessary
to reduce the motion and improve the quality of the original
optical flow. Moreover, for large motion videos, a large num-
ber of the boundary pixels have no correspondence in the next
frame. This results in artifacts in the boundary region of the out-
put warp field, since these pixels can be warped freely without
any constraint from neighboring frames. Therefore, our method
pre-stabilizes the video before processing the video with the op-
timization described in Sec. 3.

In the pre-stabilization phase, we first use KLT[23] to track
minimum eigenvalue[23] feature points over all the frames. De-
note a feature point at time t as fi,t and its correspondence in
t + 1 as fi,t+1 respectively. We solve for a per-frame 2D affine
transformation matrix Kt such that the integral of squared sec-
ond derivative is minimized:

E(K) =
∑
i,t

‖Ktfi,t −Kt+1fi,t+1‖ (11)

The solved Kt are used to transform the frames of the input
video, and the result is cropped to a rectangle as the output of
the pre-stabilization phase. Note that the objective (11) is es-
sentially similiar to (5), but computed on only a sparse set of
feature points. The output of this pre-stabilization is used as the
input for Sec. 3 and the rest of the paper.
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