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Abstract

We propose a novel neural network that infers the per-
pixel warp fields for video stabilization from the optical flow
fields of the input video. While previous learning based video
stabilization methods attempt to implicitly learn frame mo-
tions from color videos, our method resorts to optical flow for
motion analysis and directly learns the stabilization using the
optical flow. We also propose a pipeline that uses optical flow
principal components for motion inpainting and warp field
smoothing, making our method robust to moving objects, oc-
clusion and optical flow inaccuracy, which is challenging
for other video stabilization methods. Our method achieves
quantitatively and visually better results than the state-of-
the-art optimization based and deep learning based video
stabilization methods. Our method also gives a ∼3x speed
improvement compared to the optimization based methods.

1. Introduction
Video stabilization is a common need in both amateur and

professional video capture. On the amateur side, using spe-
cific video stabilization equipment is usually difficult and
expensive. Therefore, various algorithms have been devel-
oped for stabilizing the video. There are two main steps in
the video stabilization: understanding the motion pattern and
stable frame generation. For the first step, previous video
stabilization algorithms resort to explicit physics. Some of
these algorithms use image feature detection and tracking to
build feature tracks, like Matsushita et.al.[12], Liu et.al.[10]
and Grundmann et.al.[5]. Other physically based algorithms
consider the real 3D camera motion and scene structures, like
Liu et.al.[8] and Goldstein and Fattal[4]. However, the com-
plex nature of videos makes it very difficult for a physically
based motion model to cover all the scenarios: the motion
blur and occlusions may negatively affect the feature detec-
tion and tracking, and reconstructing 3D structure from video
with these effects is also difficult. Having observed the lim-
itation of physically based algorithms, in this paper, we use
the optical flow to understand the frame motions.

For the second step, traditional video stabilization al-
gorithms use full-frame or grid homography to warp the
original frames. However, simple parameterized warp-
ing cannot handle complex scenarios like parallax and the
rolling shutter effect. Like other optical flow based methods
SteadyFlow[11] and Yu and Ramamoorthi[19], we use the

per-pixel warp field, which provides the most flexibility in
warping the video frames. These methods perform well on
handling complex camera effects like rolling shutter. How-
ever, the optical flow essentially only provides a pseudo cor-
respondence between two frames. At occlusion boundaries,
pixels can either appear in the next frame or be occluded in
the next frame. The optical flow is also inaccurate in regions
lacking texture. Using the optical flow as the reference can
lead to unexpected artifacts in the output warp fields. We pro-
pose a pipeline that is specifically designed to handle the in-
accuracy in the optical flow. We are the first method that uses
the optical flow principal components[17] in video stabiliza-
tion instead of hand-crafted spatial smoothness constraints.
We will discuss the details of our pipeline in Sec. 3.

The core of our algorithm is a deep neural network that
takes the optical flow as the input and directly outputs the
warp fields. Our neural network based method overcomes
the major drawback of optical flow based methods: the com-
putational complexity. Both SteadyFlow[11] and Yu and
Ramamoorthi[19] use optimization to minimize an objective
function with a significant amount of unknowns(the motion
vectors in the warp fields). The optimization process must be
performed for each different video. Our pre-trained network
is generalizable to any videos; thus we avoid this main over-
head compared to traditional optical flow based methods.

We summarize our contribution as follows:

a) An optical flow based video stabilization network: We
proposed a novel neural network that takes the optical flow
fields as the input and produces a pixel-wise warp field for
each frame. Our neural network can be pre-trained and gen-
eralized to any videos. The details are discussed in Sec. 5.

b) Frequency domain regularized training: We propose
a frequency domain loss function that enables learning with
optical flow fields. We will show the necessity of this loss
function in Sec. 5.1.

c) Robust video stabilization pipeline: We propose a
pipeline that is robust to moving occlusion and optical flow
inaccuracy by applying PCA Flow to video stabilization. The
design is demonstrated in Sec. 3. In Sec. 7, we will show that
our method generates better results compared to the state-
of-the-art optimization based and deep learning based video
stabilization methods. Our method also achieves ∼3x speed
improvement compared to optimization based methods.



Figure 1. The 3-stage pipeline of our algorithm. 1©In the first stage(Sec. 4) we initially stabilize the video with translation and rotation.
2©We compute the optical flow between consecutive frames. 3©We generate a mask for each frame to indicate the valid regions for stabi-

lization(Sec. 4.1). 4©The invalid regions are inpainted using PCA Flow(Sec. 4.2). 5©In the second stage(Sec. 5), our stabilization network
infers the warp field from the inpainted optical flow fields. 6©In the third stage(Sec. 6), we fit the PCA Flow to the raw warp field and use the
smoothed warp field to warp the input video.

2. Related Works
In this section, we summarize the traditional physically

based video stabilization methods and the recent deep learn-
ing based methods. Most existing video stabilization works
are 2D physically based methods. The methods below all in-
volve 2D feature tracking. The difference is mainly from the
method for feature track smoothing and stable frame gen-
eration. Buehler et al.[2] re-render the frames at smoothed
camera positions using the non-metric IBR algorithm. Mat-
sushita et al.[12] and Gleicher and Liu[3] use simple 2D full-
frame transformations to warp the original frames. Liu et
al.[10] uses a grid to warp the frames and smoothes the en-
closing feature tracks. Grundmann et al.[5] proposed an L1
optimal camera path for smoothing the feature tracks. Liu
et al.[9] extracts and smoothes eigen-trajectories. Goldstein
and Fattal[4] constrain the feature track smoothing with the
epipolar geometry. Wang et al.[16] also keep the relative po-
sition of feature points, but use only 2D constraints.

In addition to these 2D physically based methods, Liu et
al.[8] first reconstruct the 3D position of the feature points
and camera positions, then smooth the camera trajectory and
reproject the feature points to new camera positions. Sun[14]
and Smith et al.[13] also use 3D information, but they require
depth cameras and light field cameras respectively.

Later works use optical flow and smooth the motion at
the pixel level. SteadyFlow[11] smoothes the motion vector
changes on each pixel using iterative Jacobi-based optimiza-
tion. Yu and Ramamoorthi[19] track the pixel motion using
the optical flow. They optimize the neural network weights
that generate the warp field, instead of solving for the warp
field directly. Their optimization must be repeated for each
new video. Our method also uses a neural network to infer
the pixel-wise warp field, but our network is pre-trained and
can be generalized to any videos. Moreover, as we discussed
in Sec. 1, using optical flow in video stabilization leads to
fundamental problems. Our method is designed specifically
to overcome these problems.

Recent works start to apply deep learning to video stabi-
lization. Xu et al.[18] uses the adversarial network to gen-
erate a target image to guide the frame warping. Wang et
al.[15] uses a two branch Siamese network to generate a
grid to warp the video frames. These networks take color

frames as input and are trained with the DeepStab dataset,
which contains stable and unstable video pairs. Deep learn-
ing methods enable near real-time performance in video sta-
bilization. Visually, the results of these works are not as good
as traditional methods. There are two potential reasons for
the weak performance of deep learning in video stabiliza-
tion. First, the video stabilization is a spatial transforma-
tion problem. The color images contain rich texture informa-
tion, but the inter-frame spatial relation remains vague. Wang
et al.[15] uses ResNet50 directly without any consideration
of spatial transformation. Xu et al.[18] added spatial trans-
former modules to the adversarial network, but training a sin-
gle network to infer spatial transformation of multiple frames
only from color frames is difficult. Second, the dataset used
in the training is not large enough. To our knowledge, the
DeepStab dataset[18] is the only dataset for the learning of
video stabilization and only contains 60 videos. For each
video, the color frames are highly similar. Training an RGB
based network with this dataset is essentially overfitting. In-
stead of trying to solve the video stabilization in an end-to-
end fashion, we separate the task into two parts. We first use
FlowNet2[6] to compute the spatial correspondence between
frames, then train a network to smooth the motion fields pro-
vided by FlowNet2. This makes the training easier and yields
better results compared to networks trained end-to-end.

3. Pipeline
The pipeline of our algorithm is shown in Fig. 1. Stage

1 is the pre-processing. We remove the large motions in
the video in the first step. We compute SURF features[1]
and their matches between consecutive frames, then com-
pute the affine transformations. The translation and rotation
components of the affine transformations are smoothed by a
simple moving average with a window size 40. The frames
are transformed using the affine transformation to obtain the
smoothed positions. The optical flow is computed with the
state-of-the-art neural network FlowNet2[6] on the smoothed
video sequence. The purpose of removing large motions is
to increase the accuracy of the optical flow. In Fig. 2(a), we
show a visual comparison of the final result versus only using
the raw input. Large motion reduction helps avoid large dis-
placement in the optical flow and warp fields, which usually



Figure 2. The visual comparison of the results (a)with and without
large motion reduction, (b)with and without masking and optical
flow inpainting. The results contain distortion if large motion is not
removed since the optical flow is not accurate. The distortion is also
introduced by the moving object, if we do not use masks and inpaint
the moving object regions.

introduce distortion in the results.
In the next step, based on a few criteria which will be

discussed in Sec. 4.1, we generate a mask for each frame in-
dicating the region where the optical flow is accurate. We in-
paint the inaccurate regions using the first 5 principal compo-
nents proposed in PCA Flow[17]. The coefficients are com-
puted by fitting the principal components to the valid regions.
In Fig. 2(b), we show an example using the raw optical flow
without masking and inpainting. The person introduces sig-
nificant distortion in the background due to the motion dis-
continuity. The analysis of the cause of this artifact and the
details of motion inpainting will be discussed in Sec. 4.2.

The second stage is our stabilization network. The input
of the network is the inpainted optical flow field. The net-
work generates a per-pixel warp field for each frame, which
compensates for the frame motion. In Sec. 5, we will discuss
the loss function(Sec. 5.1) and the training process(Sec. 5.2).

The third stage is the post-processing. Since the optical
flow in the invalid regions is inpainted, local discontinuities
can be introduced at the valid/invalid boundaries. To ensure
the continuity in the warp field, similar to stage 1, we fit the
first 5 principal components to the warp fields in the valid
regions. However, in stage 3, we replace the raw warp fields
with the resulting low-frequency fits. We will discuss the
necessity of this step in Sec. 6.1. Finally, we use the low-
frequency warp fields to warp the input video. The warped
video is cropped to a rectangle as the output.

4. Pre-Processing
In Sec. 3, we introduced the 3 stages of our pipeline: pre-

processing(stage 1), stabilization network(stage 2) and warp
field smoothing(stage 3). For stage 1, we discussed the large
motion reduction and the optical flow computation in Sec. 3.
In this section, we demonstrate the mask generation and the
PCA Flow fitting in stage 1.

4.1. Mask Generation
As we discussed in Sec. 1, using optical flow as the refer-

ence in video stabilization potentially suffers from reliability
issues. We summarize these problems into four types which
are shown in Fig. 3: 1) Motions of moving objects do not
match frame motion. 2) Inaccurate at moving object bound-
aries. 3) Inaccurate in uniform color regions due to the lack

Figure 3. Four types of scenarios in which optical flow can poten-
tially be inaccurate or cause problems. Red boxes indicate example
regions we refer to.

of motion information. 4) Large motion of still objects due
to parallax.

Our goal is to identify these regions, and generate a mask
M so that M = 0 for these regions and M = 1 otherwise.

Denote the optical flow from frame In to frame In+1 as
Fn. To detect type 1 regions, we use the pre-trained semantic
segmentation network[21, 20] to detect 11 kinds of possible
dynamic object regions in In: person, car, boat, bus, truck,
airplane, van, ship, motorbike, animal and bicycle. Note that
these objects are not necessarily moving in the scene. There-
fore, in these regions, we set Mn(p) = 1 for any pixel p that
satisfies ‖Fn(p)−Fn‖2 < 5, where Fn is the mean motion
of the entire frame.

In type 2 regions, the value of the optical flow changes
significantly, causing a large local standard deviation. We
compute the moving standard deviation with a 5×5 window,
forming the standard deviation map ∆Fn. We set Mn(p) =
0 if ∆Fn(p) > 3∆Fn where ∆Fn is the mean standard
deviation map value.

To detect type 3 regions, we compute the gradient image
of frame In, denoted as∇In. We setMn(p) = 0 if∇In < 8,
since a smaller gradient value indicates less color variation.

For type 4 regions, we simply setMn(p) = 0 if ‖Fn(p)−
Fn‖2 > 50, since the motion can only be very large in a
large motion removed video if the object is very close to the
camera.

We show sample masks generated using the metrics above
in Fig. 4.

Figure 4. Sample masks generated using our metrics described in
Sec. 4.1. The four types of invalid regions are marked in the mask
images.



4.2. PCA Flow Fitting
To inpaint the motion vectors in the Mn = 0 re-

gions, we fit the first 5 principal components proposed by
PCAFlow[17] to the Mn = 1 regions. Since the first 5 prin-
cipal components of PCAFlow are spatially smooth, we can
expect the Mn = 0 regions are filled with reasonable val-
ues that obey the overall optical flow field. We reshape and
stack the horizontal and vertical principal components into
matrices Qx and Qy ∈ Rwh×5 respectively, where wh is
the frame size. Similarly, we also reshape the optical flow
field to Fn,x and Fn,y ∈ Rwh×1. For simplicity, we omit
the subscript x and y. The fits below are computed inde-
pendently for the horizontal and vertical directions. For each
frame with maskMn, we select the corresponding rows in Q
and F where Mn = 1, forming the frame-specific principal
components Q̃n and valid optical flow matrix F̃n. Finding
the coefficients cn ∈ R5×1 to fit the valid optical flow F̃n

forms a traditional least squares problem:

min
cn

∥∥∥Q̃ncn − F̃n

∥∥∥
2

+ η ‖cn‖2 (1)

where η = 0.1 is the regularization term. The solution of
this problem is:

cn = (Q̃T
n Q̃n + ηI)−1Q̃T

n F̃n (2)

We replace the optical flow values in Mn = 0 regions with
the fitted PCA Flow Qncn. The PCA Flow inpainted optical
flow matrices for the horizontal and vertical directions are
combined and reshaped back to the inpainted optical flow
field F̂n ∈ Rw×h×2.

Figure 5. The effect imposed by moving objects. The circles repre-
sent pixels and the arrows represent motion vectors evolving with
time. The pixel can deviate from the actual track due to the mov-
ing object, resulting in a wrong warp field. The image on the right
shows an example. The red arrows point out the distortion intro-
duced by the moving object.

4.3. Discussion
We demonstrate the necessity of using the mask in Fig. 5,

in which we depict a 1D abstraction of the optical flow se-
quence. The moving object can cause a deviation in the mo-
tion vector that enters its region from the background, lead-
ing to a different pixel track from the actual motion pattern.
Stabilizing the video in this scenario introduces distortion.

Applying the mask and stabilizing the valid regions alone
still introduces distortion around moving objects. Figure 6
depicts an example of stabilizing only the valid regions. The
mask Mn breaks the pixel track, making the pixels that con-
nect to the masked pixels now only connect to one correspon-
dence. These pixels can move freely, causing distortion arti-
facts around the masked moving objects. Therefore, we need
to inpaint the optical flow in the Mn = 0 regions so that the
pixels connecting to these regions are constrained properly.

Figure 6. Only stabilizing the valid regions will cause distortion in
the warp field (red arrows) since the pixels are only constrained by
the valid pixels connecting to it. The image on the right shows an
example of this case.

Figure 7. A 1D abstraction of the motion loss. The loss indicates
the average distance between corresponding pixels in each frame.

5. Network and Training
In this section, we introduce our video stabilization net-

work. Our network follows the structure proposed by Zhou
et al.[22]. The network has a fixed number of input channels
and can only take a segment of the optical flow sequence.
Intuitively, the stabilization can handle low-frequency shake
better if more frames are stabilized together since the net-
work can access more global motion information. On the
other hand, processing more frames together leads to a larger
number of network weights and more difficulty in training.
Taking all these factors into consideration, we use 20 frames
of optical flow fields as the input of our network(representing
the motion of a 21-frame video segment). Our network in-
fers 19-frame warp fields for the video frames, excluding the
first and the last frame. In the network structure of Zhou et
al.[22], we set the number of input channels of layer conv1 1
to 20 and the number of output channels of layer conv7 3 to
19. In Sec. 5.1, we define a loss function that enables the
training of this network for our application. We will also in-
troduce the training process of our network in Sec. 5.2. Note
that to make our network be able to stabilize arbitrary long
videos, we propose a sliding window schedule that will be
discussed in Sec. 6.2.

5.1. Loss Functions
Denote a pixel at frame n as pi, where we unroll the pixel

coordinates to index i. As discussed in Sec. 4.2, denote the
PCA Flow inpainted optical flow from frame n to frame n+1

as F̂n. By definition, the correspondence of pi,n in frame
n+ 1, qj,n+1, can be represented as:

qj,n+1 = pi,n + F̂n(pi,n) (3)

Denote the output warp field for frame n as Wn. The
warped position of a pixel pi,n is defined as:

p̂i,n = pi,n + Wn(pi,n) (4)

Similarly, the warped position of its correspondence
qj,n+1 an be written as:

q̂j,n+1 = qj,n+1 + Wn+1(qj,n+1) (5)

For a video segment withN frames, the number of optical
flow fields between consecutive frames is N − 1. Intuitively,



our goal is to apply the warp field to every pixel so that the
distance between correspondences are minimized. In Fig. 7,
we depict a 1D abstraction of the motion loss. Note that we
must fix the warp field to zero for the first and the last frame,
i.e. W1 = WN = 0. In other words, the network only pro-
duces the warp field for the intermediate frames. Therefore,
we seek to find the shortest path to move the pixels in the first
frame to their destination in the last frame instead of aligning
all the frames. We define the motion loss as:

Lm =

N−1∑
n=1

∑
i

‖p̂i,n − q̂j,n+1‖2 (6)

Figure 8. The inverted Gaussian map a© and an example spectrum of
a warp field estimated with c© and without b© the frequency domain
loss. The magnitude of the spectrum is shown in the log10 domain.
The network can learn to produce a significantly smoother warp
field with Lf c©.

In addition, we also seek to enforce the spatial smooth-
ness of the warp fields. There are various kinds of con-
straints for enforcing spatial smoothness, e.g. total varia-
tion and the linear warp field constraint proposed by Yu and
Ramamoorthi[19]. However, the total variation constraint
is strong in constraining local noise but weak in constrain-
ing distortions. The linear warping constraint is difficult to
control since a strong constraint limits the warping flexibil-
ity to handle large scale non-linear motions, while a weak
constraint will not constrain local distortions properly. In
our method, we seek to unify the need for suppressing warp
field noise and avoiding local distortion without affecting the
flexibility of compensating global motions. Therefore, we
propose to constrain the warp field in the frequency domain.
Intuitively, the noise usually increases the high-frequency en-
ergy, while the local distortion increases the mid-frequency
energy. The goal is to increase the low-frequency energy in
the warp field, encouraging global warping and suppressing
local warping and noise. This can be achieved by weight-
ing the Fourier transform of the warp field in the training
process. Computationally, we compute the 2D Fourier trans-
form of each output warp field, then weight the spectrum by
an inverted Gaussian map shown in Fig. 8. In our exper-
iment, we generate the Gaussian map G with µ = 0 and
σ = 3, inverted by its maximum value, and normalized by
the maximum value:

Ĝ = (max (G)−G)/max (G)

The frequency domain loss is defined as:

Lf =

N−1∑
n=2

∥∥∥Ĝ · FWn

∥∥∥
2
. (7)

In this equation, the Fourier spectrum of the output warp field
FWn is also normalized by its maximum value. Also note

Figure 9. The comparison of the motion loss Lm in different training
schedules. The x-axis is the number of iterations and the y-axis is
the Lm value. The figure below is a zoom-in version of the black
box region of the upper figure. The red curve represents the training
with Lm only. The green curve represents the training with Lm +
10 ∗ Lf . The blue curve represents our training schedule. The
frequency domain loss helps the first training phase so that the fine-
tuning phase can achieve a lower motion loss.

that the DC term of the inverted Gaussian map Ĝ is not used
since we only encourage a low-frequency warp field but not
a uniform warp field.

In the following section, we will discuss the usage of these
loss functions in the training process.

5.2. Training
Dataset For the training of our network, we need a dataset
with a large number of unstable videos. Existing video stabi-
lization datasets, DeepStab[15](60 videos) and NUS[10](174
videos), do not contain enough motion pattern and color vari-
ation. In our training phase, we select the RealEstate10K[22]
dataset which contains stable videos with a large number of
color variations. For each training sample, we randomly se-
lect 20 frames from a random video. To produce an un-
stable video, we simply perturb every frame other than the
first frame and last frame using random 2D affine transfor-
mation. The parameters of this random 2D affine trans-
formation are: scaling U [0.9, 1.1], translation (percentage
w.r.t the frame size) U [−5%, 5%], rotation U [−5◦, 5◦] and
shear U [−5◦, 5◦]. The perturbed video forms the input of
our network.
Training Phases We summarize our training process into
two phases. In the first phase, we set the loss function as:

L1 = Lm + 10 ∗ Lf (8)

After training for 10000 iterations, we enter the second train-
ing phase, in which we switch the loss function to:

L2 = Lm (9)

and fine-tune the network for another 5000 iterations. We use
the Adam optimizer[7] with β1 = 0.9 and β2 = 0.99. The
learning rate is set to 10−4 for the first 2500 iterations and
fixed to 10−5 for the rest of the training process.

To justify this training schedule, in Fig. 9, we plot the
value of residual motion Lm which mainly indicates the



Figure 10. The visual comparison of (a)the warped frames using
the raw outputs of the networks trained with and (b)without Lf .
The red and green boxes indicate the noisy regions. The frequency
domain loss helps to improve the quality of the warp field.

Figure 11. The visual comparison of (a)the frames warped with the
raw warp field and (b)the PCA Flow smoothed warp field. Due to
the inpainting of the optical flow, the raw warp field may contain
artifacts at the valid/invalid region boundaries.

training progress. The Case-I (red curve) represents the train-
ing with Lm only. The Case-II (green curve) represents the
training with loss set to Lm + 10 ∗ Lf . It can be observed
that using Lf helps in making Lm descend to a lower value
and expedite the training process. In Case-I, we observe that
although the optical flow is spatially smooth, the output warp
field usually contains high-frequency noise. The noise makes
the network difficult to train in Case-I, especially in the early
stages(spikes appear in the red curve). By introducing Lf to
Case-I, we intend to suppress the high-frequency noise and
reduce the local minima. After Case-II converges(iteration
10000), we switch back to Case-I to fine-tune the network.
The blue curve in Fig. 9 shows that our schedule achieves the
lowest loss level. Figure 10 shows an output frame compari-
son between training withLm only and our training schedule.
Using Lf makes the raw warp field smoother.

6. Testing and Implementation Details
In this section, we will discuss the details in the third stage

and testing.

6.1. Warp Field Smoothing
Since the optical flow in the invalid regions is inpainted,

our warp fields are only valid for the valid regions. The conti-
nuity of the warp field at valid/invalid boundaries is not guar-
anteed. Using the raw warp field introduces artifacts in the
output, as shown in Fig. 11(a). Similar to the PCA Flow hole
filling discussed in Sec. 4.2, we fit PCA Flow to the valid re-
gions. In stage 3, we directly use the fitted PCA Flow as the
warp field instead of the raw warp field. Figure 11(b) shows
the result warped by the PCA Flow smoothed warp field.

6.2. Sliding Window
As discussed in Sec. 5, our network only takes 20 frames

as the input. To handle a regular video, we use a sliding
window approach for the testing phase.

The sliding window of our method works as shown in
Fig. 12. In this figure, we use the notation Wn,k to repre-
sent the warp fields from different windows. The first index

Figure 12. The sliding window schedule for processing arbitrary
long videos. For each window, we only accept the warp field for the
second frame, e.g. W1,1 in window 1. In the next window(window
2), the inpainted optical flow from the first frame to the second
frame(F̂2) is modified using the accepted warp field from the previ-
ous frame(F̂2 −W1,1).

n is the frame number within a window, and the second index
k is the window index. For each 20-frame window, the warp
field for the first frame is already known from the previous
window. We update the original optical flow as F̂k−W1,k−1

since the starting point of the motion vector is moved by
W1,k−1 in the previous window. The updated optical flow
is concatenated with the other optical flow fields as the in-
put of the network, as shown on the left of window 2 and
3 in Fig. 12. We only use the first warp field produced by
the network output to fit the principal component and warp
the second video frame. Then the window slides to the next
frame and the process above repeats.

The disadvantage with the sliding window is that we are
using 20 frames ahead of the current frame. However, the
optical flow for these frames will be updated in the future
windows, which should influence the current frame as well.
For offline video stabilization, we can process the video with
the sliding window for multiple passes. Between two passes,
we re-compute the optical flow using the warped frames.

7. Results
In this section, we compare the results of our method with

the state-of-the-art video stabilization methods. These meth-
ods are selected since they represent different approaches to
the video stabilization problem. Grundmann et.al.[5] uses
the full-frame homography as the motion model and warping
method. Liu et.al.[10] uses a grid to analyze the local frame
motion and warp the frames. Yu and Ramamoorthi[19] use
the dense optical flow as the motion model, and optimize a
set of CNN parameters that produce the pixel-wise warp field
for each segment of a video. These methods belong to tra-
ditional optimization methods since they use traditional op-
timization and have to be re-run for a new video. We also
compare with the most recent deep learning based method,
Wang et.al.[15], which uses a pre-trained network to directly
infer a warp grid from colored input frames. We compare the
results both visually and quantitatively.
Visual Comparison We provide visual comparisons in the
supplementary video since most of the artifacts are only vis-
ible in the video. For the visual comparison of video stills,
we selected a few difficult scenarios for the video stabiliza-
tion task. Figure 13 shows the comparison of video stills
from the comparison methods. Example 1 contains parallax
effects with moving occlusions. Since Liu et.al.[10] uses a



Figure 13. The visual comparison of Grundmann et.al.[5], Liu et.al.[10], Yu and Ramamoorthi[19], Wang et.al.[15] and our method. The
artifacts are noted below the video stills and pointed out by arrows. To avoid introducing extra distortion, all the video stills are scaled while
keeping the original aspect ratio.

grid to warp the video, the region enclosed by a single cell
is warped by the same homography. Therefore it generates a
shear at the motion boundaries. It also introduces distortion
in the uniform color regions(the body of the train), since es-
timating homography in these regions is difficult. Example
2 involves complex occlusions. Grid warping based meth-
ods, Liu et.al.[10] and Wang et.al.[15], produce local distor-
tion due to motion mismatch. Yu and Ramamoorthi[19] in-
troduce shear since their linear warping constraint enforces
strong rigidity on the warp field, which tries to compensate
for the motion. Our PCA Flow smoothed warp field provides
more flexibility in warping compared to the grid used by Liu
et.al.[10] and Wang et.al.[15], and the linear warping con-
strained warp field proposed by Yu and Ramamoorthi[19].
Example 3 provides another example where Liu et.al.[10]
produces shear at motion boundaries. Example 4 contains
complex structures and Example 5 contains quick object mo-
tion. Both are challenging for optical flow based video sta-
bilization methods. Yu and Ramamoorthi[19] produce sig-
nificant distortion in these cases, since they fail to constrain
the local region in the warp field. Our PCA Flow based warp
field avoids drastic compensation to optical flows and does
not introduce artifacts in local regions.

The 2D full-frame homography method of Grundmann
et.al.[5] performs well on keeping original frame appearance,
but in the supplementary video we will show that their tem-
poral stability is inferior to that of comparison methods in the

examples shown in Fig. 13. The pre-trained model proposed
by Wang et.al.[15] failed to generate good results in most of
the videos, due to the difficulty in generalization.

Figure 14. The cropping metric comparison of Grundmann et.al.[5],
Liu et.al.[10], Yu and Ramamoorthi[19], Wang et.al.[15] and our
method. Each value is the result averaged by the category in the
NUS dataset[10]. The last bar group is the average over all videos.
The quantative values of the bars are shown in the table on the
right. A larger value indicates a better result. The actual best result
of each category before rounding is marked in bold font.

Quantative Comparison For quantative comparison, we use
the metrics proposed in Liu et.al.[10] to evaluate the quality
of the results over the entire NUS dataset[10]. The values
are averaged over each category. The cropping metric mea-
sures the frame size loss of the output video due to the warp-
ing and cropping. A larger value indicates a better frame
size preservation. Figure 14 shows the cropping compari-
son. Our method maintains a large frame size similar to Liu
et.al.[10] and Yu and Ramamoorthi[19], since the PCA Flow



smoothed warp field does not introduce sharp warps that af-
fect the cropping size. Our method is slightly worse than Liu
et.al.[10] in the Running category since we have the large
motion reduction step. The full-frame affine transformation
removes large motions in the Running videos, but also leads
to a smaller overlapping area and the final frame size. This
can be easily avoided by using a smaller window size in the
large motion reduction step.

Figure 15. The distortion metric comparison of Grundmann
et.al.[5], Liu et.al.[10], Yu and Ramamoorthi[19], Wang et.al.[15]
and our method. Each value is the result averaged by the category
in the NUS dataset[10]. The last bar group is the average over all
videos. The quantative values of the bars are shown in the table on
the right. A larger value indicates a better result. The actual best
result of each category before rounding is marked in bold font.

The distortion metric measures the anisotropic scaling
that leads to distortion in the result frames. A larger value in-
dicates better preservation of the original shape of the objects
in the video. Figure 15 shows the comparison of the distor-
tion metric. Our per-pixel warp field introduces less distor-
tion than the grid warping used in Liu et.al.[10] and Wang
et.al.[15], and the full-frame homography used in Grund-
mann et.al.[5] in all the categories. Our method has less
anisotropic scaling compared to Yu and Ramamoorthi[19],
since our warp field is more flexible than their linear warp-
ing constrained warp field. Therefore, our method performs
better in preserving the original shape of the objects in the
video. It can be also seen in the visual comparison that our
PCA Flow smoothed warp field introduces less local distor-
tion. Note that the comparison deep learning based method
Wang et.al.[15] performs the worst in all the categories, im-
plying the difficulty in generalization.

Figure 16. The stability metric comparison of Grundmann et.al.[5],
Liu et.al.[10], Yu and Ramamoorthi[19], Wang et.al.[15] and our
method. Each value is the result averaged by the category in the
NUS dataset[10]. The last bar group is the average over all videos.
The quantative values of the bars are shown in the table on the
right. A larger value indicates a better result. The actual best result
of each category before rounding is marked in bold font.

The stability metric measures the stability of the output
video. A larger value indicates a more visually stable result.
Our method achieves a better stability value compared to op-
timization based methods Grundmann et.al.[5], Liu et.al.[10]

Table 1. Per-frame run time comparison
Grundmann et.al.[5] 480ms
Liu et.al.[10] 1360ms
Yu and Ramamoorthi[19] 1610ms
Wang et.al.[15] 460ms
Ours 570ms

and Yu and Ramamoorthi[19]. Our results are also signif-
icantly more robust than the deep learning based method
Wang et.al.[15], since their results are even more unstable
than the input video from the NUS dataset[10]. We will also
show in the supplementary video that we achieve better sta-
bility values with less artifacts compared to these methods.

To evaluate the robustness of our method, we also con-
duct experiments with inaccurate optical flow. We added
Gaussian random noise with standard deviation σ = 3 and
σ = 10 on the input optical flow to the network. In Fig. 14,
Fig. 15 and Fig. 16, we observe that the inaccuracy in the
optical flow leads to less cropping and distortion but worse
stability. This indicates that the more inaccuracy in the op-
tical flow, the more regions are identified as invalid regions
in the stage 1 of our method. The network tends to warp
the frame less since it receives less motion information. As
shown in Fig. 16, our method is robust to inaccurate optical
flow. Our method still maintains comparable level of stabil-
ity even with optical flow perturbed by Gaussian noise with
σ = 10.

Also note that since our method is a deep learning based
method, the speed of our method is faster than the optimiza-
tion based methods. Our network and pipeline are imple-
mented with PyTorch and Python. Table. 1 is a summary of
per-frame runtime for comparison methods. All the timing
is performed on a desktop with an RTX2080Ti GPU and an
i7-8700K CPU. On average, our unoptimized method takes
270ms in stage 1 and 300ms in stage 2 and 3. Our method
achieves better visual results and somewhat better quanti-
tative results compared to optimization based methods Liu
et.al[10] and Yu and Ramamoorthi[19] but gives ∼3x speed
up. Our method has only a slight computation time loss com-
pared to the simple 2D method of Grundmann et.al.[5] and
deep learning based method of Wang et.al.[15], but generates
significantly better visual and quantative results.

8. Conclusions and Future Work
In this paper, we proposed a novel deep learning based

video stabilization method that infers the pixel-wise warp
field for stabilizing video frames from the optical flow be-
tween consecutive frames. We also proposed a pipeline that
detects invalid regions in the optical flow field, inpaints the
invalid regions and smoothes the output warp field. The re-
sults show that our method is more robust than existing deep
learning based methods and achieves visually and quantita-
tively better results compared to the state-of-the-art optimiza-
tion based methods with a ∼3x speed improvement. Future
works would be an end-to-end network that directly converts
input videos to stabilized videos, and a dataset that enables
the training of such a network.
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